2018年MBA数学考前强化模拟题及答案(8)
2017年07月12日 来源:无锡来学教育1.掷五枚硬币,已知至少出现两个正面,求正面恰好出现三个的概率。
答案解析 :
【思路】可以有两种方法:
(1)用古典概型
样本点数为C(3,5),样本总数为C(2,5)C(3,5)C(4,5)C(5,5)(也就是说正面朝上为2,3,4,5个),相除就可以了;
(2)用条件概率
在至少出现2个正面的前提下,正好三个的概率。至少2个正面向上的概率为13/16,P(AB)的概率为5/16,得5/13
假设事件A:至少出现两个正面;B:恰好出现三个正面。
A和B满足贝努力独立试验概型,出现正面的概率p=1/2
P(A)=1-(1/2)^5-(C5|1)*(1/2)*(1/2)^4=13/16
A包含B,P(AB)=P(B)=(C5|3)*(1/2)^3*(1/2)^2=5/16
所以:P(B|A)=P(AB)/P(A)=5/13。
2.某中学从高中7个班中选出12名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少有1人参加的选法共有多少种?
答案解析:
【思路1】剩下的5个分配到5个班级.c(5,7)
剩下的5个分配到4个班级.c(1,7)*c(3,6)
剩下的5个分配到3个班级.c(1,7)*c(2,6) c(2,7)*c(1,5)
剩下的5个分配到2个班级.c(1,7)*c(1,6) c(1,7)*c(1,6)
剩下的5个分配到1个班级.c(1,7)
所以c(5,7) c(1,7)*c(3,6) c(1,7)*c(2,6) c(2,7)*c(1,5) c(1,7)*c(1,6) c(1,7)*c(1,6) c(1,7)=462
【思路2】C(6,11)=462
3.在10个信箱中已有5个有信,甲、乙、丙三人各拿一封信,依次随便投入一信箱。求:
(1)甲、乙两人都投入空信箱的概率。
(2)丙投入空信箱的概率。
答案解析:
【思路】(1)A=甲投入空信箱,B=乙投入空信箱,
P(AB)=C(1,5)*C(1,4)/(10*10)=1/5
(2)C=丙投入空信箱,
P(C)=P(C*AB) P(C* B) P(C*A ) P(C* )
=(5*4*3 5*5*4 5*6*4 5*5*5)/1000=0.385
4.已知P(A)=X,P(B)=2X,P(C)=3X且P(AB)=P(BC),求X的最大值.
答案:
【思路】P(BC)=P(AB)=P(A)=X
P(BC)=P(AB)小于等于P(A)=X
P(B C)=P(B)
P(C)-P(BC)大于等于4X
又因为P(B C)小于等于1
4X小于等于1 ,X小于等于1/4
所以X最大为1/4
5.在1至2000中随机取一个整数,求
(1)取到的整数不能被6和8整除的概率
(2)取到的整数不能被6或8整除的概率
答案:
设A=被6整除,B=被8整除;
P(B)=[2000/8]/2000=1/8=0.125;
P(A)=[2000/6]/2000=333/2000=0.1665;[2000/x]代表2000/x的整数部分;
(1)求1-P(AB);AB为A 、B的最小公倍数;
P(AB)=[2000/24]/2000=83/2000=0.0415;答案为1-0.0415=0.9585
(2)求1-P(A B),P(A B)=P(A) P(B)-P(AB)=0.25;答案为1-0.25=0.75.
无锡来学教育现已开通线上辅导课程,名师授课、专家答疑、更有定制科学复习计划!点击进入: 无锡来学教育
梅花香自苦寒来,学习是一个打磨自己的过程,希望小编整理的资料可以助你一臂之力。
点击进入>>>>无锡来学教育—未来因学而变